KTP-121.03.20

Блок автоматического управления ГВС Алгоритм 03.20

Руководство по эксплуатации

03.2021 версия 1.9 EHE

Содержание

Предупреждающие сообщения3
Используемые термины и аббревиатуры
Введение
1 Назначение4
2 Технические характеристики и условия эксплуатации
2.1 Технические характеристики
2.2 Условия эксплуатации7
3 Меры безопасности
4 Последовательность ввода в эксплуатацию7
5 Внешнее управление
6 Монтаж и подключение
6.1 Установка
6.2 Общая схема подключения10
7 Индикация и управление11
7.1 Основные элементы управления
7.2 Главный экран
7.3 Структура меню
7.4 Общая информация
7.5 Пароли
7.6 Сброс настроек
8 Режимы работы
8.1 Общие сведения
8.2 Режим «Стоп» 15
8.3 Режим «Авария». 15
8.4 Режим «Работа» 15
8.5 Режим «Тест» 16
9 Управление контурами
9.1 Измерение температуры и давления 17
9.2 Выбор схемы управления
9.3 Запуск работы контуров
9 4 Регупирование температуры 19
9.5 Приоритет ГВС 21
9.6 Погодозависимое регулирование 22
9 7 Режим экономии 23
9 7 1 Лневное время 23
972 Ночное время 24
9 7 3 Выхолные лни 24
9.8 Насосы ширкуляционные 25
9.9 Петний режим
9.10 Полпитка 27
9 11 Статистика 29
10 Аварии
10.1.Защита контуров 30
10.2 Журнал аварий

31
33
33
33
37
37
37
37
37
37
39

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе** опасной ситуации, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о потенциально опасной ситуации, которая может привести к небольшим травмам.

i

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально** опасной ситуации, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые термины и аббревиатуры

- КЗР клапан запорно-регулирующий.
- МВХ минимальное время хода.
- ЖКИ жидкокристаллический индикатор.
- НЗ нормально-закрытый.
- НО нормально-открытый.
- ПВХ полное время хода.
- ПИД пропорционально-интегрально дифференциальный (регулятор).

ТВИ – температурно-временной интеграл

Котловой регулятор – КТР-121.01.10.

Каскадные регуляторы – КТР-121.02.

Тепловые регуляторы – КТР-121.03.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с принципом работы, предварительной настройкой, конструкцией, работой и техническим обслуживанием теплового регулятора **КТР-121.03.20**, в дальнейшем по тексту именуемого «контроллер» или «прибор».

Подключение, настройка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Контроллер КТР-121.03.20 выпускается в двух исполнениях:

КТР-121.220.03.20 – работа в сети переменного напряжения с номиналом 230 В.

КТР-121.24.03.20 – работа в сети постоянного напряжения с номиналом 24 В.

1 Назначение

Контроллер с алгоритмом 03.20 предназначен для работы совместно с каскадными регуляторами КТР-121.02 и управления закрытыми контурами ГВС и отопления. Один КТР-121.03.20 управляет двумя контурами. К одному КТР-121.02 можно подключать до двух КТР-121.03.20, образуя многоконтурную систему из четырех контуров отопления и ГВС в различных комбинациях.

ВНИМАНИЕ

Контроллер КТР-121-121.02 в комплект поставки не входит и приобретается отдельно.

Прибор может выполнять следующие функции:

- Управление контурами отопления и ГВС в следующих комбинациях:
 - ГВС + отопление;
 - Отопление + отопление;
 - $\Gamma BC + \Gamma BC;$
- Погодозависимое регулирование в контурах отопления;
- Контроль давления в контурах;
- Работа на сниженной уставке в ночное время, выходные дни и будни;
- Управление группой двух циркуляционных каждого контура;
- Управление подпиткой контуров (при использовании модуля ПРМ-1);
- Сигнализация аварий.

ВНИМАНИЕ

Модуль расширения ПРМ-1 в комплект поставки прибора не входит и приобретается отдельно.

Рисунок 1.1 – Схемы управления контурами ГВС и отопления при использовании КТР-121.03.20

Перечень используемых сокращений:

- PDS датчик реле перепада давления на насосах;
- PS датчик реле давления (прессостат) контура для работы подпитки;
- НЦ циркуляционный насос контура;
- НП подпиточный насос;
- **М1** и **М2** регулирующие КЗР;
- МЗ и М4 соленоидные клапаны подпитки;
- Т датчик температуры теплоносителя в контуре;
- Р датчик давления теплоносителя в контуре.

Прибор выпускается по ТУ 4218-016-46526536-2016.

Рисунок 1.2 – Схемы управления контурами ГВС и отопления с подпиткой при использовании КТР-121.03.20 и ПРМ-1

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Характеристики прибора

Наименование	Знач	ение	
	KTP-121.220	KTP-121.24	
Питание			
Диапазон напряжения питания	~ 94…264 В (номинальное 230 В при 47… 63 Гц)	= 1930 В (номинальное 24 В)	
Гальваническая развязка	Ec	ть	
Электрическая прочность изоляции между входом питания и другими цепями	2830 B	1780 B	
Потребляемая мощность, не более	17 BA	10 Вт	
Встроенный источник питания	Есть	—	
Выходное напряжение встроенного источника питания постоянного тока	24 ± 3 B	—	
Ток нагрузки встроенного источника питания, не более	100 мА	_	
Электрическая прочность изоляции между выходом питания и другими цепями	1780 B	—	
Дискретные входы		•	
Количество входов	8		
Напряжение «логической единицы»	159…264 В (переменный ток)	15…30 В (постоянный ток)	
Ток «логической единицы»	0,75…1,5 мА	5 мА (при 30 В)	
Напряжение «логического нуля»	040 B	–3…+5 B	
Подключаемые входные устройства	Датчики типа «сухой контакт», коммутационные устройства (контакты реле, кнопок и т. д.)		
Гальваническая развязка	Групповая, по 4 входа (1–4 и 5–8, «общий минус»)		
Электрическая прочность изоляции:			
между группами входов	178	30 B	
между другими цепями	2830 B		
Аналоговые входы			
Количество входов		4	
Время опроса входов	10	мс	

Продолжение таблицы 2.1

Наименование	Значение		
	KTP-121.220	KTP-121.24	
Тип датчиков	Pt1000/Pt100: c (-200+ 850 °C) 100M: α = 0,004 (-180+200 °C); 420 mA; NTC10K: R ₂₅ = (B _{25/100} = 3950 (-2)	x = 0,00385 1/°C 426 1/°C 10 000 20 +125 °C))	
Предел допускаемой основной приведенной погрешности при измерении	Pt100/Pt1000: ± 100M: ± 1,0 %; 420 mA: ± 1,0 NTC10K: ± 1,0	± 1,0 %; 1 %; %	
Дискретные выходы			
Количество выходных устройств, тип	8 э/м ре	еле (НО)	
Коммутируемое напряжение в нагрузке:			
для цепи постоянного тока, не более	30 В (резисти	вная нагрузка)	
для цепи переменного тока, не более	250 В (резисти	ивная нагрузка)	
Допустимый ток нагрузки, не более	5 А при напря» 250 В перем и соз ф 3 А при напря» 30 В посто	кении не более иенного тока > 0,95; кении не более янного тока	
Гальваническая развязка	Групповая (1–2; 3–4	я по 2 реле ; 5–6; 7–8)	
Электрическая прочность изоляции:			
между другими цепями	283	30 B	
между группами выходов 1780 В		30 B	
Индикация и элементы управ.	ления		
Тип дисплея	Текстовый моно подсветкой, 2	охромный ЖКИ с × 16 символов	
Индикаторы	Два светодиод (красный	ных индикатора и зеленый)	
Кнопки	6	ШТ	
Корпус			
Тип корпуса	Для креплени (35	я на DIN-рейку мм)	
Габаритные размеры	123 × 90) × 58 мм	
Степень защиты корпуса по ГОСТ 14254–2015	IP	20	
Масса прибора, не более (для всех вариантов исполнений)	0,6	6 кг	
Средний срок службы	8	пет	

2.2 Условия эксплуатации

Прибор предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до плюс 55 °C;
- верхний предел относительной влажности воздуха: не более 80 % при +35 °С и более низких температурах без конденсации влаги;
- допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений);
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 по ГОСТ Р 52931–2008.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 по ГОСТ Р 52931–2008 (частота вибрации от 10 до 55 Гц).

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ Р 52931–2008.

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ 30804.6.2–2013.

По уровню излучения радиопомех (помехоэмиссии) прибор соответствует ГОСТ 30805.22-2013 (для приборов класса А).

Прибор устойчив к прерываниям, провалам и выбросам напряжения питания:

- для переменного тока в соответствии с требованиями ГОСТ 30804.4.11–2013 (степень жесткости PS2);
- для постоянного тока в соответствии с требованиями ГОСТ IEC 61131–2–2012 – длительность прерывания напряжения питания до 10 мс включительно, длительность интервала от 1 с и более.

3 Меры безопасности

По способу защиты обслуживающего персонала от поражения электрическим током, прибор относится к классу II ГОСТ IEC 61131-2-2012.

Во время эксплуатации, технического обслуживания и поверки прибора следует соблюдать требования ГОСТ 12.3.019–80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступных только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Прибор запрещено использовать в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Последовательность ввода в эксплуатацию

При первом включении прибора на экран выводится перечень необходимых для запуска прибора параметров. Последовательность первичной настройки предполагает поочередный выбор параметров:

- 1. Тип схемы;
- 2. Настройки входов (см. раздел 9.1);
- 3. Настройки уставок регулирования (см раздел 9.4).

ПРИМЕЧАНИЕ

•

Используя комбинацию кнопок <u>ALT</u> + № на экране меню настроек можно в любой момент вернутся на экран первичной настройки.

Для ввода в эксплуатацию следует:

- 1. Смонтировать прибор (см. раздел 6.1) и подключить входные/ выходные цепи (см. раздел 6.2).
- 2. Проверить правильность подключения исполнительных механизмов и датчиков (см. раздел 8.5).
- 3. Запустить установку. Проверить сообщения об авариях (см. раздел 10.2).
- 4. Если необходимо, подключить модуль расширения ПРМ-1 для управления подпиткой контуров отопления.

ПРЕДУПРЕЖДЕНИЕ

/ Модуль ПРМ-1 в предварительной настройке не нуждается.

5 Внешнее управление

При объединении КТР-121.02 с КТР-121.03, алгоритм регулирования автоматически адаптируется под условия обеспечения максимально экономичного и безопасного регулирования контуров отопления и ГВС.

Приборы поставляются с уже сконфигурированными настройками для связи. Достаточно объединить их по интерфейсу согласно схеме на рисунке 5.1.

Рисунок 5.1 – Подключение к каскадному контроллеру

Настройка сетевого адреса в КТР-121.03.20 может потребоваться в случае подключения двух устройств к одному КТР-121.02 для многоконтурной системы. В этом случае следует задать для второго контроллера КТР-121.03.20 сетевой адрес равный 56 (см. раздел 11.1).

ПРИМЕЧАНИЕ КТР-121.02 наст

КТР-121.02 настраивать не требуется. В нем уже заданы адреса опроса двух КТР121-03.20. Первый – 48, второй – 56.

Наличие связи между контроллерами можно проверить по строке «КТР-02: Норма» на экране текущих аварий каждого прибора КТР-121.03. При обрыве линии смена индикации производится с задержкой в 10 минут.

Рисунок 5.2 – Подключение двух тепловых регуляторов к каскадному контроллеру

Таблица 5.1 – Заводские настройки интерфейсов

Интерфейс	KTP-121.01.10	KTP-121.02	KTP-121.03.20
RS-485-1	SLAVE	SLAVE	SLAVE
RS-485-2	SLAVE	MASTER	SLAVE

6 Монтаж и подключение

6.1 Установка

ОПАСНОСТЬ

После распаковки прибора следует убедиться, что во время транспортировки прибор не был поврежден.

Если прибор находился длительное время при температуре ниже минус 20 °C, то перед включением и началом работ необходимо выдержать его в помещении с температурой, соответствующей рабочему диапазону, в течение 30 мин.

ОПАСНОСТЬ

Во время монтажа следует использовать средства индивидуальной защиты и специальный электромонтажный инструмент с изолирующими свойствами до 1000 В.

Во время размещения прибора следует учитывать меры безопасности из раздела 3.

Прибор следует монтировать в шкафу, конструкция которого обеспечивает защиту от попадания в него влаги, грязи и посторонних предметов.

ВНИМАНИЕ

Питание каких-либо устройств от сетевых контактов прибора запрещается.

Рисунок 6.1 – Габаритный чертеж прибора

Рисунок 6.2 – Монтаж и демонтаж прибора

Для монтажа прибора на DIN-рейке следует:

- 1. Подготовить на DIN-рейке место для установки прибора в соответствии с размерами прибора (см. рисунок 6.1).
- 2. Вставив отвертку в проушину, оттянуть защелку (см. рисунок 6.2, 1).
- 3. Прижать прибор к DIN-рейке (см. рисунок 6.2, 2). Отверткой вернуть защелку в исходное положение (см. рисунок 6.2, 3)
- 4. Смонтировать внешние устройства с помощью ответных клеммников из комплекта поставки.

Демонтаж прибора:

- 1. Отсоединить съемные части клемм от прибора (см. рисунок 6.3).
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

Рисунок 6.3 – Отсоединение съемных частей клемм

6.2 Общая схема подключения

Внешние связи монтируются проводами сечением не более 0,75 мм². Для многожильных проводов следует использовать наконечники.

Рисунок 6.4 – Схема подключения КТР–121.03.20 для управления контурами ГВС и отопления с подпиткой

7 Индикация и управление

7.1 Основные элементы управления

На лицевой панели прибора расположены элементы индикации и управления (см. рисунок 7.1):

- двухстрочный шестнадцатиразрядный ЖКИ;
- два светодиода;
- шесть кнопок.

Для редактирования значений следует:

- 1. Нажатием кнопки SEL выбрать нужный параметр (выбранный параметр начинает мигать).
- 3. Возможные варианты действия с измененным значением:
 - для сохранения следует нажать кнопку ОК;
 - для сохранения и перехода к следующему параметру следует нажать SEL.
- 4. Для отмены введенного значения следует нажать ESC

Рисунок 7.1 – Лицевая панель прибора

Таблица 7.1 – Назначение кнопок

Кнопка	Назначение
${\color{black}{\overline{}}}{\color{black}{\overline{}}}$	Смещение видимой области вверх или вниз. Перемещение по пунктам меню
ALT	Применяется в комбинациях с другими кнопками. При удержании более 6 секунд – переход в системное меню
SEL	Выбор параметра
ОК	Сохранение измененного значения
ESC	Выход/отмена. При удержании более 6 секунд выход из системного меню. Возврат на Главный экран
ALT + OK	Переход с Главного экрана в раздел «Меню»
ALT + SEL	Переход с Главного экрана в раздел Аварии
ALT + 🕅 или ALT + 💓	Изменение редактируемого разряда (выше или ниже)

Таблица 7.2 – Назначение светодиодов

Режим	Светодиод «Работа»	Светодиод «Авария»
Режим Стоп	—	
Режим Работа	Светится	
Тест Вх/Вых	—	Мигает с периодом 2 с
Авария критическая	—	Светится
Авария не критическая	—	Мигает с периодом 1 с

7.2 Главный экран

На главном экране прибора отображается вся необходимая для работы информация. Для просмотра всей информации на дисплее следует менять положение строк индикации нажатием кнопок 🕅 и \land. Внешний вид главного экрана представлен в таблице 7.3.

У каждого контура свой собственный экран. Для переключения между экранами контуров необходимо нажать комбинацию кнопок <u>ALT</u> + <u>S</u>.

Для каждого контура на главном экране отражено его текущее состояние.

Рисунок 7.2 – Главный экран

Таблица 7.3 – Главный экран

Экран	Описание
Стоп	Рабочий останов контура. Прибор не регулирует температуру в контуре и не управляет насосами, но контролирует аварии. Ожидается запуск контура в работу. Подробнее см. раздел 8.1
Равота	Ведется управление контуром, регулируется температура, производится управление циркуляционными насосами и подпиткой. Контролируются аварии. Данный статус свидетельствует о нормальной работе контура. Подробнее см. раздел 9.3
Авария	Возникла авария, препятствующая нормальной работе контура. В данном режиме контроллер ожидает устранения причины аварии и запуска в работу. Подробнее о авариях см. раздел 10.3
Тест	Прибор в режиме ручного управления исполнительных механизмов. Контролер ожидает команд ручного управления или перевода в режим работа. Подробнее см. раздел 8.5
Блок	Статус только для контура отопления, обозначающий ограничения работы контура из-за работы функции приоритета ГВС. Выход из данного состояния производится автоматически. Подробнее см. раздел 9.5
Приор.	Статус только для контура ГВС, обозначающий активность приоритета ГВС над контуром отопления. Выход из данного состояния производится автоматически. Подробнее см. раздел 9.5
Лето	Статус, обозначающий работу контура отопления в летнем режиме. Выход из данного состояния производится автоматически. Подробнее см. раздел 9.9
Эконом	Статус, обозначающий снижение уставки в контуре в ночное время, выходные дни или дневное время. Выход из данного состояния производится автоматически. Подробнее см. раздел 9.7

7.3 Структура меню

В зависимости от заданных настроек в **Тип схемы**, пункты настройки любого контура могут быть скрыты. Например, если в разделе **Тип схемы** в **Контур 2**: **Откл**, то в разделе меню **Настройки** будет отсутствовать пункт **Контур 2**.

Рисунок 7.3 – Схема переходов по меню

7.4 Общая информация

Наименование модификации прибора, версии программного обеспечения и дату ее релиза можно найти в **Меню** — **Информация** — **Общая**.

ПРЕДУПРЕЖДЕНИЕ

Информация будет необходима при обращении в техническую поддержку.

Таблица 7.4 – Меню/Информация/Общая

Описание
Название экрана
Наименование модификации прибора
Версия программного обеспечения
Дата релиза программного обеспечения
Текущая дата и время прибора

7.5 Пароли

С помощью пароля можно ограничить доступ к определенным группам настроек (Меню \to Настройки \to Пароли).

ПРЕДУПРЕЖДЕНИЕ

По умолчанию пароли не заданы.

Пароли блокируют доступ:

- Пароль 1 к группе Быстр.Настройка;
- Пароль 2 к группе Настройки;
- Пароль 3 к группе Тест Вх/Вых.

Для сброса паролей следует:

- перейти в Меню прибора;
- нажать комбинацию кнопок (<u>ALT</u> + <u>ESC</u>);
- набрать пароль 118 и подтвердить сброс.

7.6 Сброс настроек

Параметры прибора можно вернуть к заводским значениям с помощью команды в меню Сброс настроек.

Л ВНИ Дан

ВНИМАНИЕ

Данная команда не распространяется на значения паролей, параметры даты, времени и сетевые настройки прибора.

Таблица 7.5 – Пароли

Экран	Описание
Пароли	Название экрана
Пароль1: 0	Пароль доступа в меню «Быстр.Настройка»
Пароль2: 0	Пароль доступа в меню «Настройки»
Пароль3: 0	Пароль доступа в меню «Тест Вх/Вых»

Таблица 7.6 – Меню/Настройки/Сброс настроек

Экран	Описание	Диапазон
Сврос настроек		Нет,
на заводские:Нет	Сорос настроек на заводские значения	Да

8 Режимы работы

8.1 Общие сведения

При подаче питания контроллер переходит в тот режим, в котором был до сброса питания. При первом включении прибора - Стоп.

Прибор может работать в следующих режимах:

- Работа;
- Стоп;
- **Тест**;
- Авария.

Режим работы индицируется на экране.

Схема переходов между режимами представлена на рисунке 8.1.

Рисунок 8.1 – Схема переходов между режимами

8.2 Режим «Стоп»

В режиме Стоп контроллер не выдает управляющих сигналов, но контролирует аварии.

ВНИМАНИЕ

Настройку прибора перед пуско-наладочными работами следует производить в режиме Стоп.

Для перехода из режима Стоп в режим Работа следует переключить режимы (Управление: Стоп — Старт) с главного экрана, либо подать команду на запуск по сети или внешней кнопкой «Старт».

Обратный переход осуществляется аналогично.

8.3 Режим «Авария»

Режим **Авария** предназначен для обеспечения безопасности ИТП. В случае возникновения нештатной ситуации контроллер фиксирует причины аварии, выдает аварийный сигнал на дискретный выход DO4 ПРМ-1 для первого контура и дискретный выход DO8 ПРМ-1 для второго контура. В данном режиме поведение прибора определяется типом возникшей аварии и настройками.

8.4 Режим «Работа»

В режиме Работа прибор:

- регулирует температуру контуров;
- управляет насосами циркуляции;
- контролирует аварии.

8.5 Режим «Тест»

ВНИМАНИЕ

Режим **Тест** предусмотрен для пусконаладочных работ. Не рекомендуется оставлять контроллер в тестовом режиме без контроля наладчика, это может привести к повреждению оборудования.

Режим «Тест» предназначен для:

- проверки работоспособности дискретных и аналоговых датчиков;
- проверки встроенных реле;
- правильности подключения исполнительных механизмов.

ПРЕДУПРЕЖДЕНИЕ

Режим Тест доступен только если все контуры переведены в режим Стоп.

Таблица 8.1 – Экраны тестирования входов/выходов КТР-121

Экран	Описание	Диапазон
Тест Вх/Вых	Название экрана	
Режим: Не Актив	Переход в тестовый режим	0 - Не акт. 1 - Активен
Выходы дискр:		
DO 1:K1 Hacoc -0	Включить циркуляционный насос 1 контура 1	0 - Выкл, 1 - Вкл
DO 2:K2 Hacoc -0	Включить циркуляционный насос 2 контура 1	0 - Выкл, 1 - Вкл
DO 3:К1 СПзкр-0	Команда «закрыть» на КЗР контура 1	0 - Выкл, 1 - Вкл
DO 4:К1 СПотк-0	Команда «открыть» на КЗР контура 1	0 - Выкл, 1 - Вкл
DO 5:K2 Hac1-0	Включить циркуляционный насос 1 контура 2	0 - Выкл, 1 - Вкл
DO 6:К2 СПэкр-0	Включить циркуляционный насос 2 контура 2	0 - Выкл, 1 - Вкл
DO 7:K3 Hacoc-0	Команда «открыть» на КЗР контура 2	0 - Выкл, 1 - Вкл
DO 8:Авария-0	Команда «закрыть» на КЗР контура 2	0 - Выкл, 1 - Вкл
Входы дискр:		
DI1:K1PDS -0	Реле перепада давления насоса контура 1 (НО)	0 - авария 1 - норма
DI2:K2PDS -0	Реле перепада давления насоса контура 2 (НО)	0 - авария 1 - норма
DI5:К1 Лето -0	Кнопка перехода в режим лето контура 1 (НО)	0 - Авто 1 - Лето

Продолжение таблицы 8.1

Экран	Описание	Диапазон
DI6:К2 /јето-0	Кнопка перехода в режим лето контура 2 (HO)	
DI8:Кн.Сврос-Ø	Кнопка «Сброс аварий» (НО)	1 - сбросить
Входы аналог :		
AI1:K1 T 64.2	Температура воды в контуре 1	См. таблицу 2.1
AI2:K2 T 55.2	Температура воды в контуре 2	См. таблицу 2.1
AI3:K1P2,7	Давление в контуре 1	См. таблицу 2.1
AI4:K2P2,6	Давление в контуре 2	См. таблицу 2.1
Входы ПРМ дискр:		
DΙ1:PDS ΗΠκ1	Датчик перепада давления насосов подпитки контура 1	0 - Выкл, 1 - Вкл
DI2:PDS HΠκ2	Датчик перепада давления насосов подпитки контура 2	0 - Выкл, 1 - Вкл
DI3:PSк1	Датчик реле давления (прессостат) контура 1 для работы подпитки	0 - Выкл, 1 - Вкл
DI4:PSк2	Датчик реле давления (прессостат) контура 2 для работы подпитки	0 - Выкл, 1 - Вкл
Выходы ПРМ дискр:		
DO 1:НП1к1	Насос подпитки 1 контура 1	0 - Выкл, 1 - Вкл
DO 2:НП1к2	Насос подпитки 1 контура 1	0 - Выкл, 1 - Вкл
DO 3:КП к 1	Клапан подпитки контура 1	0 - Выкл, 1 - Вкл
DO 4:Аварияк1	Лампа аварии контура 1	0 - Выкл, 1 - Вкл
DO 5:НП1к2	Насос подпитки 1 контура 2	0 - Выкл, 1 - Вкл
DO 6:НП2к2	Насос подпитки 2 контура 2	0 - Выкл, 1 - Вкл
DO 7:КПк2	Клапан подпитки контура 2	0 - Выкл, 1 - Вкл
DO 8:Аварияк2	Лампа аварии контура 2	0 - Выкл, 1 - Вкл
Далее->АLТ+ВНИЗ	Для продолжения настройки нажать сочетание клавиш АLT + 🕅	
Назад-> ESC	Для выхода из меню нажать кнопку ESC	

9 Управление контурами

9 Управление контурами

9.1 Измерение температуры и давления

Прибор работает с резистивными датчиками температуры типа — РТ1000, РТ100, 100М и NTC10K (см. таблицу 2.1).

Тип датчика задается для каждого входа отдельно.

Если измеренное значение отличается от фактического, то рекомендуется ввести корректировку Сдвиг (для каждого входа задается отдельно):

$$T'_{\rm изм} = T_{\rm изм} + C$$
двиі

Для корректного измерения давления следует настроить пределы преобразования токового сигнала 4... 20 мА в пользовательские единицы измерения (МПа, бар, атм. и т. п.).

Функция измерения и контроля давления на подаче активируется параметром **Меню** — **Настройки** — **Тип схемы** — **Контр Рк.**.

Таблица 9.1 – Меню/Настройки/Входы

Экран	Описание	Диапазон
Настройка входов	Название экрана	
К1:Темп-ра:РТ1000	Тип датчика температуры контура 1	PT1000, PT100, 100M, NTC10K
Сдвиг: 0,000	Корректировка измеренного значения	-100+100
К2:Темп-ра:РТ1000	Тип датчика температуры контура 2	РТ1000, РТ100, 100М, NTC10К, Откл.
Сдвиг: 0,000	Корректировка измеренного значения	-100+100
Давление:		
20mA: 10,0	Верхняя граница измерения (давление контура 1)	0+100
4mA: 0,0	Нижняя граница измерения (давление контура 1)	0+100
К2:Давление		
20mA: 10,0	Верхняя граница измерения (давление контура 2)	0+100
4мА: 0,0	Нижняя граница измерения (давление контура 2)	0+100
Сдвиг: 0,000	Корректировка измеренного значения	-100+100
Вр.Флтр	Время фильтра дискретных сигналов на входах, с	11,5
Назад -> ESC	Для выхода из меню нажать кнопку ESC	

9.2 Выбор схемы управления

Наличие, тип и количество исполнительных механизмов в схеме определяется параметрами группы настроек **Тип схемы**. Настройка конфигурации схемы управления определяет логику работы прибора.

внимание

Данная группа меню появляется для настройки при первом включении контроллера. При последующей работе вернуться к параметрам **Тип схемы** можно из меню прибора.

ПРИМЕЧАНИЕ

Видимость некоторых параметров зависит от настроек типа схемы. Например, при выборе типа контура как ГВС – группа параметров погодозависимость для этого контура станет невидимой, ГВС работает на фиксированной уставке. Так же и с параметрами режима **Лето**. При отсутствии модуля расширения ПРМ-1, группа настроек подпитки, скрывается из меню.

9.3 Запуск работы контуров

После получения команды на запуск работы КТР-121.03.20 начинает управление контурами ГВС и отопления работая совместно с КТР-121.02. Прибор ориентируется на показания подключённых датчиков и производит автоматическое регулирование температуры в контурах, находящихся в работе. По показаниям датчика наружного воздуха КТР-121.03.20 корректирует уставку по графику отопления и переводит контуры отопления в летний режим.

ВНИМАНИЕ

Информация о температуре наружного воздуха передается с каскадного регулятора по интерфейсу RS-485.

Управление работой контуров осуществляется с главного экрана прибора.

Экран	Описание	Диапазон
Тип Схемы	Название экрана	
Контур 1:ГВС	Выбор типа контура № 1	0 – Отопление, 1 – ГВС
Контур 2: Отоп	Выбор типа контура № 2	0 – Откл., 1 – Отопление
Подпитка:Нет	Наличие в системе подпитки	0 – Нет 1 – Есть
Контр Рк.:Нет	Контроль давления в контурах аналоговыми датчиками (на работу подпитки не влияет)	0 – Нет 1 – Есть
Далее-≻АLТ+ВНИЗ Назад-≻ЕЅС	Для продолжения настройки нажать сочетание клавиш	

9.4 Регулирование температуры

Для регулирования температуры контура прибор управляет трехходовым клапаном по ПИД-закону. По показаниям датчика температуры теплоносителя в контуре контроллер определяет необходимую степень открытия клапана для достижения требуемой температуры.

ПРИМЕЧАНИЕ

КТР-121.03.20 работает только с сервоприводами КЗР, имеющими дискретный способ управления.

Необходимая для контура отопления температура определяется по графику отопления (см. раздел 9.6) и корректируется в выходные дня, в ночном и дневном режимах (см. раздел 9.7).

Для контура ГВС текущая уставка определяется фиксированной уставкой **Т**_{гвс уст} и коррекцией в выходные дни, ночном или дневном режиме.

ПРИМЕЧАНИЕ

При выборе типа контура как отопление параметр **Туст ГВС** становится невидим. Также становятся невидимыми настройки связанные с приоритетом ГВС.

ПРЕДУПРЕЖДЕНИЕ

Алгоритм управления сервоприводом, подразумевает использование сигнала «доводки». Применение сервопривода без концевых выключателей может привести к его неисправности.

Скорость реакции на изменение температуры настраивается шкалой управления Скорость реакции в группе быстрых настроек. Для каждого контура есть своя шкала.

Крайнее левое положение индикатора на шкале соответствует наиболее быстрой реакции, но менее точному регулированию. С каждым последующим увеличением шкалы вправо, скорость реакции уменьшается, но увеличивается точность.

Скорость реакции на изменение температуры также настраивается численным способом – ПИД коэффициентами (Приложение Настройка регулятора).

Рисунок 9.1 – Регулирование температуры КЗР

Таблица 9.3 – Быстрые настройки

Экран	Описание	Диапазон
К :Быстр.Настройка	Название экрана	
Контур 1 ГВС		
Тгвсуст: 70	Уставка температуры контура ГВС, °С	4590
Скорость реакц:		
[***]	Шкала задания скорости реакции регулятора	
Резко Плавно		
Далее-АLТ+ВНИЗ		
Контур 2 Отп		
Скорость реакц:		
[***]	Шкала задания скорости реакции регулятора	
Назад- ESC	Для выхода из меню нажать кнопку ESC	

Качество регулирования температуры определяется параметрами коэффициентов ПИД-регулятора, задаваемых в настройках. Значение полного времени хода сервопривода КЗР (**Вр. ХодаСервопр Полное**) должно соответствовать фактическому времени перемещения сервопривода задвижки от закрытого положения до открытого. От данных настроек зависит точность расчета управляющих импульсов, что в значительной степени влияет на точность работы регулятора.

Для того, чтобы предотвратить воздействие частых и коротких импульсов на сервопривод клапана, управляющий сигнал подается только при условии, что его длительность больше минимального времени хода.

Устанавливаемое время хода относится только к диапазону модулирования.

Пример

Время полного хода сервопривода (90°) – 15 секунд, минимальное открытое положение сервопривода – 20°. Максимальное открытое положение сервопривода – 80°. Модулируемое полное время хода задвижки: (15 · (80 – 20) ÷ 90) = 10 с.

Таблица 9.4 – Полные настройки для ГВС

Экран	Описание	Диапазон
К :Регулирование	Название экрана	
Тгвсуст: 55	Уставка температуры контура ГВСчч:мм	4590
Зона Нечув: 5,0	Зона нечувствительности контура ГВСчч:мм	0,020,0
ПИДКп: 50	Пропорциональный коэффициент ПИД- регулятора	0999
ПИД Ти: Ø	Время интегрирования ПИД-регулятора, с	0999
ПИД Тд: 5	Время дифференцирования ПИД-регулятора, с	0999
Вр.Хода Сервопр:		
Полное: 60с	Полное время хода сервопривода, с	10180
Мин-е: 5,0с	Минимальное время хода сервопривода, с	0,3100,0
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш АLT +	
Назад-> ESC	Для выхода из меню нажать кнопку ESC	

Таблица 9.5 – Полные настройки для отопления

Экран	Описание	Диапазон
Регулирование	Название экрана	
Зона Нечув: 5,0	Зона нечувствительности контура отопления	0,020,0
ПИДКп: 50	Пропорциональный коэффициент ПИД- регулятора	0999
ПИД Ти: 0	Время интегрирования ПИД-регулятора	0999
ПИД Тд: 5	Время дифференцирования ПИД-регулятора	0999
Вр.Хода Сервопр:		
Полное: 60с	Полное время хода сервопривода, с	10180
Мин-е: 5,0с	Минимальное время хода сервопривода, с	0,3100,0
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш АLT + 🕅	
Назад- ESC	Для выхода из меню нажать кнопку ESC	

9.5 Приоритет ГВС

Режим приоритета ГВС предназначен для обеспечения максимально быстрого достижения нужной температуры в контуре ГВС и имеет следующие варианты работы:

- 1. **НеАктив** работа контуров отопления и ГВС происходит параллельно и не оказывая влияния друг на друга.
- 2. **Активен** ограничивается тепловой поток контура отопления для ускорения достижения уставки контура ГВС.

Условия блокировки контура отопления – клапан контура ГВС открыт более чем на 95 % более 15 минут.

Клапан контура отопления закрывается до заданной величины в параметре **КЗР отоп**. Если спустя 5 минут температура контура ГВС не достигла уставки, то клапан контура отопления закрывается еще на 5 %. Так будет продолжаться, пока КЗР не примет положение минимальной величины открытого состояния.

ВНИМАНИЕ

Порог минимальной величины открытого состояния клапана составляет 20% (не редактируемая величина).

Условия разблокировки контура отопления – температура ГВС становится выше **Тгвс уст** – **Зона нечув.** и держится выше рассчитанного значения в течение 10 минут.

Активный режим приоритета ГВС и информация о блокировке отопления отображается на на главном экране как **Приор.** и **Блок**

Для увеличения эффекта приоритета ГВС есть возможность увеличения температуры в котловом контуре на величину смещения **Корр. Тпр.**. Данная корректировка будет включена автоматически после того, как КЗР отопления достигнет своего минимального открытого состояния (20 %).

ПРИМЕЧАНИЕ

Если сумма текущей уставки регулирования каскадного контроллера и **Корр. Тпр** превышают сигнализационный порог котлового контура, то уставка в котловом контуре примет значение, равное значению **Тпр сиг**.

ВНИМАНИЕ

При достижении текущей температуры сигнализационного порога **Тпр** сиг, каскадный контроллер будет ограничивать выходную мощность котлов, что может привести к нехватке тепловой энергии для достижения уставки ГВС.

ПРИМЕЧАНИЕ

В случае обрыва связи с ведущим контроллером КТР–121.02 коррекция уставки каскадного регулятора становится равна нулю.

Таблица 9.6 – Приоритет ГВС

Экран	Описание	Диапазон
К :Приоритет ГВС	Название экрана	
Режим: Активен	Настройка наличия приоритета контура ГВС	0 – Не Активен 1 – Активен
КЗРотоп: 40%	Положение клапана контура отопления при работе приоритета ГВС, %	2090
Корр. Тпр: 10	Величина коррекции уставки температуры котлового контура, °С	030
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш	
Назад- ESC	Для выхода из меню нажать кнопку ESC	

9.6 Погодозависимое регулирование

Прибор поддерживает температуру в контуре отопления в зависимости от температуры наружного воздуха по заданному графику.

ПРИМЕЧАНИЕ

Для контура ГВС погодозависимая коррекция уставки не используется. При работе с этим типом контура группа настроек погодозависимости скрывается из меню.

Количество точек графика можно задать от двух до четырех.

При аварии датчика наружной температуры контроллер не прекращает регулирование отопления. Коррекция уставки осуществляется по среднесуточному значению температуры наружного воздуха, до момента устранения причины аварии **Тнар** или перезапуска прибора по питанию.

ПРИМЕЧАНИЕ

Для компенсации возможных резких изменений температуры функция скорости пересчета графика погодозависимого регулирования имеет программное ограничение 12 °С в минуту. При изменении параметров графика, текущая уставка рассчитывается в соответствии с программной задержкой.

Рисунок 9.2 – График зависимости температуры сдвига от наружной температуры

Экран	Описание	Диапа- зон
К:Погодозав-ть	Название экрана	
Кол-во точек: 2	Количество точек отопительного графика	24
Тнар Туст		0
1)-40,0 90,0	Температура наружного воздуха, точка № 1, °С	-6040
	Температура уставки контура отопления, точка № 1, °С	0100
2) 10,0 40,0	Температура наружного воздуха, точка № 2, °С	-6040
	Температура уставки контура отопления, точка № 2, °С	0100
3) 10,0 40,0	Температура наружного воздуха, точка № 3, °С	-6040
	Температура уставки контура отопления, точка № 3, °С	0100
4) 20,0 -10,0	Температура наружного воздуха, точка № 4, °С	-6040
	Температура уставки контура отопления, точка № 4, °С	0100
Назад-> ЕЅС	Для выхода из меню нажать кнопку ESC	
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш	

Таблица 9.7 – Меню/Настройки/Погодозависимость

9.7 Режим экономии

Прибор позволяет снижать уставку регулирования каждого контура в трех временных промежутках:

- Ночное время;
- Дневное время;
- Выходные дни.

Для корректной работы режимов удостоверьтесь в правильности настроек часов реального времени прибора (см. Приложение Настройка времени и даты).

Пример

Скомпенсировать провалы температуры ГВС из-за повышенного утреннего водоразбора можно следующим образом:

- 1. Задать повышенную уставку **Тгвс**, например +10 °С к обычной уставке, 65 °С.
- Задать время включения дня по истечению повышенного водоразбора, например 11:00.
- Задать время выключения дня перед началом повышенного водоразбора, например 5:00.
- 4. Задать СдвигДень равным по модулю величине завышения уставки Тгвс, но с противоположным знаком, для компенсации завышенной уставки, -10 °С.

Таким образом, включение дня с 11 утра до 5 утра следующего дня компенсирует повышенную уставку на -10 ° C, контроллер будет поддерживать 55 °C. С 5 до 11 утра компенсация **СдвигДень** отключена, прибор будет поддерживать повышенную уставку **Тгвс** = 65 °C.

9.7.1 Дневное время

В дневное время уставки контуров отопления и ГВС могут быть автоматически снижены на значение Сдвиг День.

і ПР Дл

ПРИМЕЧАНИЕ

Для каждого контура величина снижения уставки **Сдвиг День** задается отдельно.

Переход в ночной режим будет осуществлен, если значение параметра **День экономия/Вкл** сравнялось со значением встроенных в прибор часов.

Выход из ночного режима будет осуществлен, если значение параметра **День** экономия/Выкл сравнялось со значением встроенных в прибор часов.

Таблица 9.8 – Режим экономии

Экран	Описание	Диапазон
К :Режим Эконом	Название экрана	
Выходные:Нет	Дни недели, в которые уставка регулирования будет снижена	0 - нет 1 - Сб 2 - Вс 3 - Сб+Вс
Сдвиг Вых.: О	Величина уменьшения уставки регулирования в выходные дни, °С	0 – откл -140
Ночь экономия:		
Вкл 23:30	Время включения коррекции уставок ночью, чч:мм	00:00 – 23:59
Выкл 05:30	Время отключения коррекции уставок ночью, чч:мм	00:00 – 23:59
СдвигНочь: О	Величина коррекции уставки регулирования в ночное время, °C	0 – откл -140
День экономия		
Вкл 12:30	Время включения коррекции уставок днем, чч:мм	00:00 – 23:59
Выкл 16:30	Время отключения коррекции уставок днем, чч:мм	00:00 – 23:59
СдвигДень: 0	Величина уменьшения уставки регулирования в дневное время, °C	0 – откл -140
Далее: АLТ+Вниз	Для продолжения настройки нажать сочетание клавиш АLT + 🕅	
Назад-> ESC	Для выхода из меню нажать кнопку ESC	

ПРИМЕЧАНИЕ

Смещение уставки в дневное время можно отключить, задав параметр Сдвиг День равным нулю. На главном экране должна исчезнуть индикация режима Эконом.

ПРИМЕЧАНИЕ

Параметры времени коррекции уставки днем настраиваются раздельно для трех контуров.

ВНИМАНИЕ

Настоятельно рекомендуется использовать режим экономии, это сократит затраты по выработке тепловой энергии на отопление и ГВС.

Сочетание клавиш ALT + 🖾 ведет на экран настроек летнего режима.

9.7.2 Ночное время

Наступление ночного режима сопровождается снижением уставки регулирования в контурах отопления ГВС на величину **Сдвиг Ночь**.

ПРИМ Лляк

ПРИМЕЧАНИЕ

Для каждого контура величина снижения уставки Сдвиг Ночь задается отдельно.

Переход в ночной режим будет осуществлен, если значение параметра День экономия/Вкл сравнялось со значением встроенных в прибор часов.

Выход из ночного режима будет осуществлен, если значение параметра **День экономия/Выкл** сравнялось со значением встроенных в прибор часов.

ПРИМЕЧАНИЕ

Параметры времени коррекции уставки ночью настраиваются раздельно для двух контуров.

ПРИМЕЧАНИЕ

Смещение уставки в ночное время можно отключить, задав параметр Сдвиг Ночь равным нулю. При этом на главном экране индикация режима Раб.Ночь не появляется.

9.7.3 Выходные дни

На время выходных дней контроллер автоматически снижает уставку регулирования в контурах отопления и ГВС на величину Сдвиг Вых.

Пониженная уставка применяется как на контур отопления, так и на контур ГВС и настраиваются для каждого контура индивидуально. Количество выходных дней определяется настройкой **Выходные**. При необходимости данная функция может быть отключена.

i

ПРИМЕЧАНИЕ

Режимы экономии в выходные дни настраиваются раздельно для двух контуров.

9.8 Насосы циркуляционные

Прибор управляет двумя насосными группами. В каждой группе по 2 насоса работают на обеспечение циркуляции теплоносителя в контурах. Работоспособность насосов контролируется по датчику реле перепада давления. На одну насосную группу один датчик перепада. На время включения насоса показания от датчика перепада давления не контролируются в течении **Вр.разгона**.

Для выравнивания наработки, прибор чередует насосы через заданные промежутки времени (**Вр.работы**).

Каждому насосу можно назначить один из режимов работы:

- Отключен насос не используется при выполнении алгоритма.
- Основной используется при выполнении алгоритма
- Резервный в случае неисправности основного насоса берет на себя его функции до тех пор, пока основной не восстановит свою работоспособность.

ПРИМЕЧАНИЕ

Функция чередования по наработке активна только если двум насосам назначен режим работы Основной.

9.8.1 Борьба с ложными срабатываниями датчика перепада давления

Чтобы исключить ошибки в работе насосов при сбоях реле перепада давления контроллер управляет насосами с учетом возможных пропаданий сигналов реле перепада, когда по факту перепад в норме.

Насосы контуров при аварии по перепаду давления перезапускаются автоматически. Если вышел из строя первый насос, прибор запускает второй. При неисправности второго контроллер запускает первый. Если количество неудачных включений насоса превысит подряд пять попыток, то прибор будет интерпретировать это как неисправность и зафиксирует аварию насоса до момента его сброса командой **Сброс** (из меню прибора, внешней кнопкой или сетевой командой по RS-485).

ПРИМЕЧАНИЕ

Под неудачным включением подразумевается запуск насоса без получения сигнала от перепада давления по истечению времени разгона.

Настройка поведения контроллера при сбоях реле перепада давления производится в параметре **Перезапуск** (**Меню: Настройки** → **Насосы**).

Экран	Описание	Диапазон
К :Насосы	Название экрана	
Насосі: Основной	Режим работы циркуляционного насоса № 1	0 – НеИсп 1 – Основной 2 – Резерв
Насос2:Основной	Режим работы циркуляционного насоса № 2	0 – НеИсп 1 – Основной 2 – Резерв
Вр.разгона: 10с	Время игнорирования показания от датчика перепада давления при старте насоса, с	2180
Вр.работы: 12ч	Период смены циркуляционных насосов по наработке, часы	1240
Перезапуск:Нет	Наличие перезапуска насосов при пропадании сигнала от PDS	0 - Нет, 1 - Есть
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш	
Назад-> ESC	Для выхода из меню нажать кнопку ESC	

Таблица 9.9 – Циркуляционные насосы

9.9 Летний режим

Лето - режим, при котором регулирование температуры в контурах отопления отключено. КЗР закрывается, контроль аварий прекращается. Подпитка не работает. Насосы контура в летний период поочередно включаются на время Вр.прогона с периодичностью Вр.Простоя. Одновременно с насосами прибор совершает один цикл открытия – закрытия КЗР.

ПРИМЕЧАНИЕ

Если Вр.Прогона = 0, то насосы включаться не будут.

Условие перехода в летний режим – среднесуточная температура наружного воздуха стала выше Тлето/зима + Δ.

Условие выхода из летнего режима – среднесуточная температура наружного воздуха стала ниже Тлето/зима.

Режимы можно переключать для каждого контура по отдельности с помощью внешних кнопок Зима/Лето к1 и Зима/Лето к2. При замыкании кнопки контур переходит в режим Лето. Переход Зима/Лето может быть осуществлен также автоматически, независимо от состояния внешних дискретных сигналов.

С целью избежания «дребезга» при переключении режимов в контроллере введена не редактируемая задержка Δ = 3 град.

На работу контура ГВС режим Лето не влияет.

ВНИМАНИЕ

В случае потери связи с КТР-121.02 прибор перестает получать

информацию о уличной температуре и использует среднюю суточную температуру, вычисленную до потери связи.

Таблица 9.10 – Летний режим

Экран	Описание	Диапазон
К :Режим Лето	Название экрана	
Летоконтура:Нет	Перевод контура в летний режим	0 - Нет 1 - Да
Тлето/зима: 8,0	Порог наружной температуры для перехода в летний режим, °C	-5,0+40,0
Сезон: Ручн/Зима	Команда выбора способа определения сезона	0 - Ручн 1 - Авт
Прогон насосов		
Вр.Прогона: 30с	Время работы насосов в летнем режиме, с	0 – откл 1…60
Вр.Простоя: 7д	Период включения насосов в летнем режиме, дни	130
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш А⊔Т + 🕅	
Назад-> ESC	Для выхода из меню нажать кнопку ESC	

Рисунок 9.3 – Определение сезона

9.10 Подпитка

Если подпитка в настройках отключена, то эта группа настроек в меню не отображается.

ВНИМАНИЕ

Для использования функции подпитки к контроллеру КТР-121.03.20 подключается модуль расширения ПРМ-1. При управлении подпиткой доступны функции чередования насосов, подсчета времени наработки насосов и контроль аварий утечки трубопровода.

Для управления подпиткой контура используются насосные группы из двух насосов и подпиточный клапан. У каждого контура отопления своя независимая система подпитки (см. раздел 1). Включение подпитки происходит по условию снижения давления в контуре. Подпитка выключается после возврата давления в контуре в норму. Контроль давления для работы подпитки осуществляется по дискретному датчику давления, прессостату.

Работоспособность насосов контролируется по датчику реле перепада давления. На одну насосную группу один датчик перепада. Чередование работы насосов осуществляется последовательно, по факту включения подпитки. Каждому насосу можно назначить один из трех режимов работы:

- Отключен насос не используется при выполнении алгоритма.
- Основной используется при выполнении алгоритма.
- Резервный в случае неисправности основного насоса, берет на себя его функции до тех пор, пока основной не восстановит свою работоспособность.

i

ПРИМЕЧАНИЕ

Функция чередования активна только если двум насосам назначен режим работы Основной.

Для предупреждения обратного тока воды при запуске/останове насосов подпитки прибор управляет подпиточным клапаном. Никаких настроек для его работы не требуется. Клапан открывается с задержкой в две секунды после запуска насосов. При отключении подпитки команды закрытия клапана и отключения насоса подаются одновременно.

9.10.1 Контроль утечки трубопровода

Ситуацию, когда в сутки подпитка будет работает больше заданного в настройках времени (Настройка — Подпитка — Макс Вр. раб) прибор определяет как утечку в контуре. С целью избежать затопления помещения котельной подпитка прекращает свою работу до устранения неисправности и командой Сброс (из меню прибора, внешней кнопкой или сетевой командой по RS-485).

Таблица 9	9.11 – I	Подпитка
-----------	----------	----------

Экран	Описание	Диапазон
К :Подпитка	Название экрана	
Насосі:Основной	Режим работы насоса подпитки № 1	0 – НеИсп 1 – Основной 2 – Резерв
Насос2:Основной	Режим работы насоса подпитки № 2	0 – НеИсп 1 – Основной 2 – Резерв
Вр.разгона: 10с	Время игнорирования показания от датчика перепада давления при старте насоса контура, с	2180
МаксВр.рав: 60м	Максимальное время работы подпитки в сутки, мин	0 — откл 1720
Перезапуск:Нет	Наличие перезапуска насосов при пропадании сигнала от PDS	0 - Нет, 1 - Есть
Ав. Утечки	Поведение прибора при возникновении утечки	0 - Сигн, 1 - Есть, 2 - Нет
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш	
Назад-> ESC	Для выхода из меню нажать кнопку ESC	

ПРИМЕЧАНИЕ

Контроль утечки можно отключить, задав **МаксВр.раб =** 0. В этом случае ограничений на время работы подпитки нет.

Поведение прибора при возникновении утечки определяется параметром Ав. Утечки:

- Сигн авария утечки фиксируется в журнал, включается лампа аварии, подпитка работает по заданному алгоритму;
- Есть авария утечки фиксируется в журнал, загорается лампа аварии, подпитка прекращает работу.
- Нет подпитка работает по заданному алгоритму.

ПРИМЕЧАНИЕ

По умолчанию, подпитка работает в режиме сигнализации.

9.10.2 Борьба с ложными срабатываниями датчика перепада давления

Для исключения некорректной работы насосов при сбоях реле перепада давления, контроллер управляет насосами с учетом возможных пропаданий сигналов реле перепада, когда по факту перепад в норме.

Насосы контуров при аварии по перепаду давления перезапускаются автоматически. Вышел из строя первый насос, КТР-121 запускает второй. При неисправности второго, КТР-121 запускает первый. Если количество неудачных включений насоса превысит пять попыток подряд, то прибор будет интерпретировать это как неисправность и зафиксирует аварию насоса до момента его сброса командой **Сброс** (из меню прибора, внешней кнопкой или сетевой командой по RS-485).

Настройка поведения контроллера при сбоях реле перепада давления производится в параметре **Перезапуск** (Меню: Настройки — Подпитка).

ПРИМЕЧАНИЕ

Под неудачным включением подразумевается запуск насоса, без получения сигнала от перепада давления по истечению времени разгона.

9.11 Статистика

Расширенная информация о количестве часов работы каждого насоса отображается на экране статистики.

Таблица 9.12 – Статистика

Экран	Описание	Диапазон
Статистика	Название экрана	
Время наработки:		
К1 Hacoc 1: ч	Время наработки циркуляционного насоса 1 контура 1	0999
К1Насос 2: ч	Время наработки циркуляционного насоса 2 контура 1	0999
К2Насос 1: ч	Время наработки циркуляционного насоса 1 контура 2	0999
К2 Насос 2: ч	Время наработки циркуляционного насоса 2 контура 2	0999
КіНасПі: ч	Время наработки подпиточного насоса 1 контура 1	0999
К1НасП2: ч	Время наработки подпиточного насоса 2 контура 1	0999
К2НасП1: ч	Время наработки подпиточного насоса 1 контура 2	0999
К2 НасП2: ч	Время наработки подпиточного насоса 2 контура 2	0999
Сврос: Выврать	Сброс статистики выбранного насоса	K1 Hac 1, K1 Hac 2, K2 Hac 1, K2 Hac 2, K1 Hac⊓ 1, K1 Hac⊓ 2, K2 Hac⊓ 1, K2 Hac⊓ 2, Bcex
Назад-) ЕЅС	Для выхода из меню нажать кнопку ESC	

10 Аварии

10.1 Защита контуров

Для безопасной работы котла следует задать пределы и времена задержки срабатываний сигнализации и аварий (Меню — Настройки — Контур х — Защита):

- для контроля и сигнализации перегрева контура порог срабатывания сигнализации **Тк сигн.**;
- для определения минимального открытого положения КЗР при аварии датчика температуры контура — КЗР авар;
- для контроля смесительного контура или насоса контуров ГВС и прямого контура отопления используется параметр **Нас авар**.

Полный перечень контролируемых аварий см. раздел 10.3.

10.2 Журнал аварий

Аварийные события фиксируются в журнал.

В журнал заносятся следующие параметры:

- краткое название аварии;
- время аварии;
- время сброса аварии.

Журнал рассчитан на 16 записей.

Последнее событие находится в начале журнала под номером 1.

В случае переполнения журнала наиболее старые записи удаляются.

ПРИМЕЧАНИЕ

Время сброса аварии в журнале фиксируется при выходе из режима Авария. В зависимости от события дата квитирования может фиксироваться в журнале либо вручную, либо автоматически. Условия сброса аварий см. таблицу 10.3.

Для пролистывания журнала на экране следует задать номер записи.

<u> ∖ |</u>ПРЕДУПРЕЖДЕНИЕ

В случае некорректного отображения времени и даты следует проверить настройки по Приложению Настройка времени и даты.

Таблица 10.1 – Защита контуров

Экран	Описание	Диапазон
К :Защита	Название экрана	
КЗРавар: 40%	Положение КЗР контура при аварии контура, %	0100
Тк сигн: 95,0	Высокая температура в контуре (сигнализация)	60150
Далее: ALT+Вниз	Для продолжения настройки нажать сочетание клавиш АLT + 🕅	
Назад-> ЕЅС	Для выхода из меню нажать кнопку ESC	

Таблица 10.2 – Меню/Аварии/Архивный журнал

Экран	Описание	Диапазон
Аварии: Журнал	Название экрана	
1) Вкл	Номер записи в журнале событий для отображения	116
	Краткое название аварии	
Дата фиксации:		
ДДММГГ чч:мм:сс	Дата и время возникновения аварии	
Датаквитир-ния:		
ДДММГГ чч:мм:сс	Дата и время устранения аварии	
Сврос журнала:Нет	Сброс журнала аварий	Да – сбросить записи

10.3 Список аварий

Для просмотра текущего состояния аварий прибора следует использовать меню текущих аварий. Для быстрого перехода из главного экрана на экран состояния аварий предусмотрена комбинация кнопок [ALT] + [SEL].

В случае наступления любого аварийного события независимо от вида реакции прибора срабатывает сигнализация Авария контура 1 или Авария контура 2 на ПРМ-1. На главном экране отображается текущая авария, а статус системы меняется на **Авария**.

Таблица 10.3 – Список аварий

N⁰	Вид Аварии	Условие появления	Реакция прибора*	Сброс аварии	Инди	Индикация	
				Текущие аварии	Архивный журнал		
			Аварии датчиков				
1	Авария датчика температуры контура	Значение измеряемого сигнала находится вне допустимого диапазона для выбранного типа	Работа контура с неисправным датчиком прекращается. Закрытие клапана на значение КЗР авар	Автоматический сброс после устранения неисправности	Контур 1 Тк1:Ав.Дат.	ТкіАв.Дат.	
2	Авария датчика давления контура	датчика, либо произошел обрыв линий связи	Режим работы не меняется	Автоматический сброс после устранения неисправности	Тк1:Ав.Дат. Рк1:Ав.Дат.	РкіАв.Дат.	
	•		Защиты контуров		•		
3	Высокая температура контура	Измеряемое значение температуры контура превысило заданное в настройках Тпр сигн	Режим работы не меняется	Автоматический сброс при снижении значения температуры Тпр сигн	Тк1:Сигнал	Ткі Сигнал	
			Насосы циркуляции				
4	Неисправен насос циркуляции контура	Пропал сигнал от реле перепада давления на насосной группе	Режим работы не меняется. Блокировка работы насосов. Запуск второго насоса (если они используются в схеме)	Вручную, командой сброса аварии после устранения неисправности	Контур 1 Насос 1: Авария Насос 2: Норма	Кі НасСетіАв	
5	Все насосы циркуляции контура в аварии	Все насосы из насосной группы неисправны	Переход контура с отсутствием рабочих насосов в аварию. Закрытие клапана на значение КЗР авар.	Автоматический сброс после устранения неисправности	Контур 1 Насос 1: Авария Насос 2: Котел2: Авария		
			Подпитка				
6	Утечка контура	Суммарное время работы насосов подпитки в сутки превышает заданное в настройках значение Макс Вр.раб	Режим работы не меняется. Работа подпитки прекращается	Вручную, командой сброса аварии после устранения неисправности	Подп.к1: Утечка	Подп.к1: Утечка	
7	Неисправен насос подпитки	Пропал сигнал от реле перепада давления на насосной группе	Режим работы не меняется. Блокировка работы насосов. Запуск второго насоса (если используется в схеме)	Вручную, командой сброса аварии после устранения неисправности***	Подпитка НасПодп1: Авария НасПодп1: Норма	Ав.Нас.Подпі	

Продолжение таблицы 10.3

NՉ	Вид Аварии	Условие появления	Реакция прибора*	Сброс аварии	Индикация	
					Текущие аварии	Архивный журнал
8	Все насосы подпитки в аварии	Все насосы из насосной группы неисправны	Режим работы не меняется. Функции подпитки не активны	Автоматический сброс после устранения неисправности	Подпитка: НасПодп1: Авария НасПодп2: Авария	
			Аварии связи			
9	Нет связи с КТР-121.02**	Обрыв шины связи между КТР- 121.02 и КТР-121.03.20	Режим работы не меняется. Коррекция уставки температуры котлового контура для приоритета ГВС не производится. В качестве показаний температуры наружного воздуха принимается среднесуточное значение****	Автоматический сброс после устранения неисправности	КТР-02: Нет Связи	Het RS
10	Нет связи с модулем расширения	Обрыв шины связи между модулем ПРМ-1 и КТР-121.03.20	Режим работы не меняется. Функции подпитки не активны	Вручную, командой сброса аварии после устранения неисправности	Подпитка: Модуль: НетСвязи	ПРМ НетСвязи

ПРИМЕЧАНИЕ * В текличи * В текущих авариях при отсутствии неисправностей отражается сообщение.

** Включается только после того как связи не было более 10 мин.

*** При неисправности одного насоса подпитки или циркуляционного насоса лампа аварии не включается.

**** При пропадании питания подсчет среднесуточного сбрасывается на последнее значение **Тнар**, пришедшее по сети.

11 Сетевой интерфейс

11.1 Сетевой интерфейс

<u>∖</u>|ПРЕДУПРЕЖДЕНИЕ

Для корректной работы прибора вносить изменения в параметры «Прибор», «Входы», «Выходы» ЗАПРЕЩЕНО!

В контроллере установлены два модуля интерфейса RS-485 для организации работы по протоколу Modbus.

Интерфейс RS-485 (1) служит для связи с КТР-121.02.41. Интерфейс RS-485 (2) предназначен для диспетчеризации.

Для работы контроллера в сети RS-485 (интерфейс 1) следует задать его сетевые настройки в системном меню контроллера с помощью кнопок и индикатора на лицевой панели (см. рисунок 11.1).

Прибор в режиме Slave поддерживает следующие функции:

- чтение состояния входов/выходов;
- запись состояния выходов;
- чтение/запись сетевых переменных.

Прибор работает по протоколу Modbus в одном из двух режимов: Modbus-RTU или Modbus-ASCII, автоматически распознает режим обмена RTU/ASCII. Адреса регистров, тип переменных параметров, доступных по протоколу Modbus, приведены в разделе 11.2.

Рисунок 11.1 – Настройка параметров сетевого интерфейса

11.2 Карта регистров

Прибор поддерживает протоколы обмена Modbus RTU и Modbus ASCII (переключение автоматическое).

Функции чтения: 0x01 (read coil status), 0x03 (read holding registers), 0x04 (read input registers).

Функции записи: 0x05 (force single coil), 0x06 (preset single register), 0x10 (preset multiple registers).

Параметры битовой маски (состояние системы, аварии и др.) могут читаться как функцией 0x03, так и 0x01 – в этом случае номер регистра нужно умножить на 16 и прибавить номер бита.

Пример

Требуется считать состояние второго дискретного выхода, используя функцию 0x01. Номер регистра 514, номер бита 2.

Адрес ячейки рассчитывается следующим образом: 514 · 16 + 2 = 8226.

Поддерживаемые типы данных:

- word беззнаковое целое (2 байта), на каждый параметр отводится один регистр Modbus;
- float с плавающей точкой (4 байта), занимает два соседних регистра Modbus. Передача числа осуществляется младшим регистром вперед (little-endian);
- boolean бит.

Типы доступа: R – только чтение; RW – чтение/запись; W – только запись.

Таблица 11.1 – Алгоритм 03.20

Регистр	Тип	До- ступ	Имя переменной	Значения
512	word	R	Битовая маска входов	
512.0	bool	R	Реле перепада давления на циркуляционном насосе контура 1 (НО)	0 – Авария, 1 – Норма
512.1	bool	R	Реле перепада давления на циркуляционном насосе контура 2 (НО)	0 – Авария, 1 – Норма
512.3	bool	R	Реле перепада давления на группе котловых насосов циркуляции (НО)	0 – Авария, 1 – Норма
512.4	bool	R	Реле перепада давления на группе котловых насосов циркуляции (НО)	0 – Авария, 1 – Норма
512.6	bool	R	Реле давления в контуре 1 (НО)	0 – Норма, 1 – Авария
512.7	bool	R	Реле давления в контуре 2 (НО)	0 – Норма, 1 – Авария

Продолжение таблицы 11.1

Регистр	Тип	До- ступ	Имя переменной	Значения
512.9	bool	R	Кнопка «Лето». Перевести контур 1 в режим «Лето»	0 – Зима, 1 – Лето
512.10	bool	R	Кнопка «Лето». Перевести контур 2 в режим «Лето»	0 – Зима, 1 – Лето
512.15	bool	R	Кнопка «Сброс аварий» (НО)	0 – Норма, 1 – Сбросить
514	word	R	Битовая маска выходов	
514.0	bool	R	Включить циркуляционный насос № 1 контура 1	0 – Нет, 1 – Да
514.1	bool	R	Включить циркуляционный насос № 2 контура 1	0 – Нет, 1 – Да
514.2	bool	R	Включить циркуляционный насос № 1 контура 2	0 – Нет, 1 – Да
514.3	bool	R	Включить циркуляционный насос № 2 контура 2	0 – Нет, 1 – Да
514.6	bool	R	Закрыть КЗР контура 1	0 – Нет, 1 – Да
514.7	bool	R	Открыть КЗР контура 1	0 – Нет, 1 – Да
514.8	bool	R	Закрыть КЗР контура 2	0 – Нет, 1 – Да
514.9	bool	R	Открыть КЗР контура 2	0 – Нет, 1 – Да
514.12	bool	R	Включить лампу «Авария в контуре 1»	0 – Нет, 1 – Да
514.13	bool	R	Включить лампу «Авария в контуре 2»	0 – Нет, 1 – Да
515	word	R	Битовая маска выходов (Часть 2)	
515.0	bool	R	Открыть клапан подпитки контура 1	0 – Нет, 1 – Да
515.1	bool	R	Включить насос подпитки № 1 контура 1	0 – Нет, 1 – Да
515.2	bool	R	Включить насос подпитки № 2 контура 1	0 – Нет, 1 – Да
515.3	bool	R	Открыть клапан подпитки контура 2	0 – Нет, 1 – Да
515.4	bool	R	Включить насос подпитки № 1 контура 2	0 – Нет, 1 – Да
515.5	bool	R	Включить насос подпитки № 2 контура 2	0 – Нет, 1 – Да
516	real	R	Температура прямой воды контура 1	**
518	real	R	Температура прямой воды контура 2	**

Продолжение таблицы 11.1

Регистр	Тип	До- ступ	Имя переменной	Значения
522	real	Rw	Температура наружного воздуха	**
524	real	R	Давление прямой воды контура 1	**
526	real	R	Давление прямой воды контура 2	**
530	word	R	Процент открытия КЗР контура 1	0100
531	word		Процент открытия КЗР контура 2	0100
532	word	W	Командное слово 1	
532.2	bool	W	Сбросить все аварии	0 – Нет, 1 – Сбросить
532.3	bool	W	Перейти в режим «Старт» контур 1	0 – Нет, 1 – Да
532.4	bool	W	Перейти в режим «Старт» контур 2	0 – Нет, 1 – Да
533	word	W	Командное слово 2	
533.0	bool	W	Перейти в режим «Стоп»	0 – Нет, 1 – Да
533.3	bool	W	Перейти в режим «Стоп» контур 1	0 – Нет, 1 – Да
533.4	bool	W	Перейти в режим «Стоп» контур 2	0 – Нет, 1 – Да
535	word	R	Код состояния системы 2	
535.1	bool	R	Переключения режимов Старт/Стоп контур 1	0 – Стоп, 1 – Старт
535.2	bool	R	Переключения режимов Старт/Стоп контур 2	0 – Стоп, 1 – Старт
535.4	bool	R	Флаг сезона «Зима» для контура 1	0 – Зима, 1 – Лето
535.5	bool	R	Флаг сезона «Зима» для контура 2	0 – Зима, 1 – Лето
535.7	bool	R	Тип контура 1	0 – ГВС, 1 – Отопление
535.8	bool	R	Тип контура 2	0 – ГВС, 1 – Отопление
535.10	bool	R	Наличие аналогового датчика давления в контурах	0 – Нет, 1 – Есть
535.14	bool	R	Флаг приоритета ГВС с повышением уставки в котловом контуре	0 – Повышена, 1 – Не повышена
535.15	bool	R	Тип управления	0 – Местное, 1 – Дистанционное

Продолжение таблицы 11.1

	Продол	жение	табли	цы 11.1
Значения	Регистр	Тип	До-	

Регистр	Тип	До- ступ	Имя переменной	Значения
536	word	R	Код состояния контура 1	0 – Откл, 1 – Стоп, 2 – Тест, 3 – Лето, 4 – Блок, 5 – Работа, 6 – Эконом, 7 – Приор, 8 – Авария
537	word	R	Код состояния контура 2	0 – Откл, 1 – Стоп, 2 – Тест, 3 – Лето, 4 – Блок, 5 – Работа, 6 – Эконом, 7 – Приор, 8 – Авария
539	Int	R	Текущее значение уставки температуры воды контура 1	590
540	Int	R	Текущее значение уставки температуры воды контура 2	590
542	Int	R	Сдвиг уставки температуры в котловом контуре	030
544	word	R	Код состояния аварий	
544.0	bool	R	Неисправен датчик температуры наружного воздуха	0 – Норма, 1 – Авария
544.2	bool	R	Неисправен насос подпитки № 1 контура 1	0 – Норма, 1 – Авария
544.3	bool	R	Неисправен насос подпитки № 2 контура 1	0 – Норма, 1 – Авария
544.4	bool	R	Неисправен насос подпитки № 1 контура 2	0 – Норма, 1 – Авария
544.5	bool	R	Неисправен насос подпитки № 2 контура 2	0 – Норма, 1 – Авария
544.6	bool	R	Нет связи с модулем расширения	0 – Норма, 1 – Авария
544.7	bool	R	Нет связи с общекотельным контроллером	0 – Норма, 1 – Авария
544.8	bool	R	Неисправен датчик температуры воды в контуре 1	0 – Норма, 1 – Авария
544.9	bool	R	Температура воды в контуре 1 больше верхней аварийной границы	0 – Норма, 1 – Авария
544.10	bool	R	Неисправен насос № 1 циркуляции контура 1	0 – Норма, 1 – Авария

Регистр	Тип	До- ступ	Имя переменной	Значения
544.11	bool	R	Неисправен насос № 2 циркуляции контура 1	0 – Норма, 1 – Авария
544.12	bool	R	Все насосы циркуляции контура 1 в аварии	0 – Норма, 1 – Авария
544.13	bool	R	Неисправен датчик давления воды в контуре 1	0 – Норма, 1 – Авария
544.14	bool	R	Утечка в контуре 1	0 – Норма, 1 – Авария
544.15	bool	R	Все насосы подпитки контура 1 в аварии	0 – Норма, 1 – Авария
545	word	R		
545.0	bool	R	Неисправен датчик температуры воды в контуре 2	0 – Норма, 1 – Авария
545.1	bool	R	Температура воды в контуре 2 больше верхней аварийной границы	0 – Норма, 1 – Авария
545.2	bool	R	Неисправен насос № 1 циркуляции контура 2	0 – Норма, 1 – Авария
545.3	bool	R	Неисправен насос № 2 циркуляции контура 2	0 – Норма, 1 – Авария
545.4	bool	R	Все насосы циркуляции контура 2 в аварии	0 – Норма, 1 – Авария
545.5	bool	R	Неисправен датчик давления воды в контуре 2	0 – Норма, 1 – Авария
545.6	bool	R	Утечка в контуре 2	0 – Норма, 1 – Авария
545.7	bool	R	Все насосы подпитки контура 2 в аварии	0 – Норма, 1 – Авария
546	real	RW	Уставка температуры воды ГВС в контуре 1	4590
548	real	RW	Зона нечувствительности температуры воды в контуре 1	020
550	int	RW	Величина коррекции уставки в контуре 1 регулирования в ночное время	0 – Нет, -140
551	int	RW	Величина коррекции уставки в контуре 1 регулирования в дневное время	0 – Нет, -140
552	int	RW	Величина коррекции уставки в контуре 1 регулирования в выходные дни	0 – Нет, -140
553	real	RW	Уставка температуры воды в контуре 2	4590
555	real	RW	Зона нечувствительности температуры воды в контуре 2	020
557	int	RW	Величина коррекции уставки в контуре 2 регулирования в ночное время	0 – Нет, -140

Продолжение таблицы 11.1

Регистр	Тип	До- ступ	Имя переменной	Значения
558	int	RW	Величина коррекции уставки в контуре 2 регулирования в дневное время	0 – Нет, -140
559	int	RW	Величина коррекции уставки в контуре 2 регулирования в выходные дни	0 – Нет, -140
560	real	RW	Пропорциональный коэффициент ПИД- регулятора контура 1	0999
562	Int	RW	Время интегрирования ПИД-регулятора контура 1	0999
563	Int	RW	Время дифференцирования ПИД-регулятора контура 1	0999
564	real	RW	Пропорциональный коэффициент ПИД- регулятора контура 2	0999
566	Int	RW	Время интегрирования ПИД-регулятора контура 2	0999
567	Int	RW	Время дифференциирования ПИД-регулятора контура 2	0999

ПРИМЕЧАНИЕ

i

* Значения параметров в определенных конфигурациях или режимах системы.

** В зависимости от выбранного типа датчика диапазон измерения может меняться, для температурных датчиков см. таблицу 2.1. Для датчика давления диапазон измерения зависит от заданных границ преобразования, см. таблицу 9.1.

12 Техническое обслуживание

Обслуживание прибора во время эксплуатации заключается в его техническом осмотре. Во время выполнения работ следует соблюдать меры безопасности из раздела 3.

Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:

- очистку корпуса, клеммных колодок от пыли, грязи и посторонних предметов;
- проверку крепления на DIN-рейке;
- проверку качества подключения внешних связей.

Обнаруженные во время осмотра недостатки следует немедленно устранить.

13 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- знак соответствия требованиям TP TC (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

14 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

15 Комплектность

Наименование	Количество
Контроллер*	1 шт.
Руководство по эксплуатации	1 экз.
Паспорт и Гарантийный талон	1 экз.
Комплект клеммных соединителей	1 к-т
* Исполнение в соответствии с заказом.	

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

16 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

17 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – **12 месяцев** со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Настройка времени и даты

Рисунок А.1 – Схема доступа к меню настройки времени и даты

ВНИМАНИЕ

Часы реального времени настраиваются на заводе во время изготовления прибора. Если параметры даты и времени не соответствуют действительному значению, то их следует откорректировать.

В прибор встроены энергонезависимые часы реального времени. Прибор будет поддерживать время и дату в случае отключения основного питания.

Просмотр и редактирование текущих времени и даты доступны в Системном меню.

Приложение Б. Настройка регулятора

Для ручной настройки регулятора следует использовать режим нагрева. Настройки регулятора расположены в меню **Меню** — **Настройки** — **Регулирование** (настройка доступна, если выбран тип горелки модулируемая). В ходе наблюдений следует фиксировать значения регулируемого параметра (скорость и время подхода к уставке).

Регулятор настраивается вручную итерационным методом с оценкой процесса по наличию:

- колебаний;
- перехода графика регулируемой величины через уставку.

В случае ПИД-регулирования, зависимость выходной мощности от управляющего воздействия можно записать в виде:

$$Y_i = K_{\Pi} \cdot \left(E_i + \tau_{\mathfrak{A}} \cdot \frac{\Delta E_i}{\Delta t_{\scriptscriptstyle \mathsf{H3M}}} + \frac{\Delta t_{\scriptscriptstyle \mathsf{H3M}}}{\tau_{\scriptscriptstyle \mathsf{H}}} \sum_{j=0}^i E_i \right)$$

где

- Y_i выходная мощность ПИД-регулятора;
- К_п коэффициент пропорциональности;

ти – интегральная постоянная;

т_д – дифференциальная постоянная;

Еі – разность между уставкой и текущим измеренным значением;

Δt_{изм} – время дискретизации.

В зависимости от показателей, корректировку следует выполнять по следующим правилам:

- уменьшение К_п способствует увеличению колебаний регулируемой величины, и амплитуда колебаний регулируемой величины может возрасти до недопустимого уровня;
- увеличение К_п способствует снижению быстродействия и ухудшению быстродействия регулятора с повышением вероятности колебаний регулируемой величины;
- при завышенном **Т**_и процесс подхода регулируемой величины к уставке становится односторонним даже при наличии колебаний. Быстродействие регулятора уменьшается;
- при заниженном **Т**_и появляется значительный переход регулируемой величины через уставку. Но существенно ухудшается быстродействие

регулятора и повышается вероятность колебаний регулируемой величины.

Для оптимальной настройки регулятора график регулируемой величины должен иметь минимальное значение показателя ошибки регулирования (A₁) при достаточной степени затухания — $\phi = 1 - A_3 \div A_1 = 0.8...0.9$.

Для настройки регулятора следует:

- 1. Задать заводские уставки, если значения коэффициентов были изменены.
- 2. Изменять значение **К**_П (на единицы), пока значение перерегулирования не будет равно 5 °C.
- 3. Уменьшать **Т**_и, пока отклонение от уставки не будет равно 2—3 °С.
- 4. Уменьшать **К**_п (на единицы) до достижения недорегулирования.
- 5. Уменьшать **Т**_и, пока отклонение от уставки не будет 1 °C.

Рисунок Б.2 – Влияние Ти на выход на уставку

Рисунок Б.3 – Оценка ошибки регулирования

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru отдел продаж: sales@owen.ru www.owen.ru 1-RU-52830-1.9